Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.268
Filtrar
1.
Clin Imaging ; 109: 110140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574605

RESUMO

PURPOSE: Gadolinium deposition has been reported in several normal anatomical structures in the brain after repeated administration of intravenous gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI). This study presents preliminary results to see if there is any gadolinium deposition in the dentate nucleus and globus pallidus after using intrathecal GBCAs. METHODS: Between November 2018 and November 2020, 29 patients who underwent intrathecal contrast-enhanced MR cisternography with the suspicion of rhinorrhea were included in this prospective study. In contrast-enhanced MR cisternography, gadoterate meglumine was administered by intrathecal injection at a dose of 1 ml. One month later, patients had a control MRI with 3D T1 SPACE fat-saturated (FS) and susceptibility weighted images (SWI) sequences. The ratio of dentate nucleus signal intensity to middle cerebellar peduncle signal intensity (DN/MCP ratio) and the ratio of globus pallidus signal intensity to thalamus signal intensity (GP/T ratio) were calculated using region of interest (ROI) on pre-contrast and control MRI sequences. RESULTS: There was no significant difference for DN/MCP ratio and GP/T ratio on 3D T1 SPACE FS and SWI sequences after intrathecal GBCAs administration compared to baseline MRI. CONCLUSION: Administration of intrathecal GBCAs did not cause a measurable change in the signal intensity of the dentate nucleus and globus pallidus after a single injection.


Assuntos
Meios de Contraste , Compostos Organometálicos , Humanos , Gadolínio , Globo Pálido/diagnóstico por imagem , Globo Pálido/patologia , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/patologia , Estudos Prospectivos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Gadolínio DTPA
2.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651310

RESUMO

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Assuntos
Gânglios da Base , Distonia , Córtex Motor , Vias Neurais , Transtornos Parkinsonianos , Ratos Long-Evans , Animais , Córtex Motor/fisiopatologia , Córtex Motor/patologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/patologia , Ratos , Vias Neurais/fisiopatologia , Distonia/fisiopatologia , Distonia/patologia , Distonia/etiologia , Gânglios da Base/patologia , Masculino , Globo Pálido/patologia , Modelos Animais de Doenças
3.
Artigo em Inglês | MEDLINE | ID: mdl-38617832

RESUMO

Clinical vignette: We present the case of a patient who developed intra-operative pneumocephalus during left globus pallidus internus deep brain stimulation (DBS) placement for Parkinson's disease (PD). Microelectrode recording (MER) revealed that we were anterior and lateral to the intended target. Clinical dilemma: Clinically, we suspected brain shift from pneumocephalus. Removal of the guide-tube for readjustment of the brain target would have resulted in the introduction of movement resulting from brain shift and from displacement from the planned trajectory. Clinical solution: We elected to leave the guide-tube cannula in place and to pass the final DBS lead into a channel that was located posterior-medially from the center microelectrode pass. Gap in knowledge: Surgical techniques which can be employed to minimize brain shift in the operating room setting are critical for reduction in variation of the final DBS lead placement. Pneumocephalus after dural opening is one potential cause of brain shift. The recognition that the removal of a guide-tube cannula could worsen brain shift creates an opportunity for an intraoperative team to maintain the advantage of the 'fork' in the brain provided by the initial procedure's requirement of guide-tube placement.


Assuntos
Estimulação Encefálica Profunda , Pneumocefalia , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Pneumocefalia/diagnóstico por imagem , Pneumocefalia/etiologia , Pneumocefalia/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Globo Pálido/diagnóstico por imagem , Globo Pálido/cirurgia , Movimento
6.
J Neurol Sci ; 459: 122970, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520940

RESUMO

BACKGROUND: Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to involuntary postures or repetitive movements. Genetic mutations are being increasingly recognized as a cause of dystonia. Deep brain stimulation (DBS) is one of the limited treatment options available. However, there are varying reports on its efficacy in genetic dystonias. This systematic review of the characteristics of genetic dystonias treated with DBS and their outcomes aims to aid in the evaluation of eligibility for such treatment. METHODS: We performed a PUBMED search of all papers related to genetic dystonias and DBS up until April 2022. In addition to performing a systematic review, we also performed a meta-analysis to assess the role of the mutation on DBS response. We included cases that had a confirmed genetic mutation and DBS along with pre-and post-operative BFMDRS. RESULTS: Ninety-one reports met our inclusion criteria and from them, 235 cases were analyzed. Based on our analysis DYT-TOR1A dystonia had the best evidence for DBS response and Rapid-Onset Dystonia Parkinsonism was among the least responsive to DBS. CONCLUSION: While our report supports the role of genetics in DBS selection and response, it is limited by the rarity of the individual genetic conditions, the reliance on case reports and case series, and the limited ability to obtain genetic testing on a large scale in real-time as opposed to retrospectively as in many cases.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distonia/terapia , Estudos Retrospectivos , Resultado do Tratamento , Distúrbios Distônicos/genética , Distúrbios Distônicos/terapia , Globo Pálido , Chaperonas Moleculares
7.
ACS Infect Dis ; 10(4): 1222-1231, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38536197

RESUMO

The pathogenesis of neurosyphilis remains unclear. A previous study found a noteworthy up-regulation of a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS5) gene in human brain microvascular endothelial cells cocultured with Treponema pallidum subspecies pallidum (Tp). To investigate the ADAMTS5 role in Tp invading the central nervous system (CNS), we conducted relevant experiments. Our study revealed that Tp caused an increase in human cortical microvascular endothelial cell/D3 (hCMEC/D3) barrier permeability and significantly enhanced ADAMTS5 expression. The heightened permeability of the hCMEC/D3 barrier was effectively mitigated by inhibiting ADAMTS5. During this process, Tp promoted interleukin-1ß production, which, in turn, facilitated ADAMTS5 expression. Furthermore, Tp significantly reduced the glycocalyx on the surface of hCMEC/D3 cells, which was also ameliorated by inhibiting ADAMTS5. Additionally, ADAMTS5 and endothelial glycocalyx components notably increased in the cerebrospinal fluid of HIV-negative neurosyphilis patients. This research provided the first demonstration of the ADAMTS5 role in Tp invading the CNS and offered new insight into neurosyphilis pathogenesis.


Assuntos
Neurossífilis , Treponema pallidum , Humanos , Treponema pallidum/genética , Barreira Hematoencefálica , Células Endoteliais , Globo Pálido , Sistema Nervoso Central , Permeabilidade , Proteína ADAMTS5
8.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456947

RESUMO

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Núcleo Subtalâmico/fisiologia , Tálamo/fisiologia , Doença de Parkinson/terapia , Eletrodos , Globo Pálido , Eletrodos Implantados
9.
J Neurosci Methods ; 4012024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486714

RESUMO

Background: This work presents a toolbox that implements methodology for automated classification of diverse neural responses to optogenetic stimulation or other changes in conditions, based on spike train recordings. New Method: The toolbox implements what we call the Spike Train Response Classification algorithm (STReaC), which compares measurements of activity during a baseline period with analogous measurements during a subsequent period to identify various responses that might result from an event such as introduction of a sustained stimulus. The analyzed response types span a variety of patterns involving distinct time courses of increased firing, or excitation, decreased firing, or inhibition, or combinations of these. Excitation (inhibition) is identified from a comparative analysis of the spike density function (interspike interval function) for the baseline period relative to the corresponding function for the response period. Results: The STReaC algorithm as implemented in this toolbox provides a user-friendly, tunable, objective methodology that can detect a variety of neuronal response types and associated subtleties. We demonstrate this with single-unit neural recordings of rodent substantia nigra pars reticulata (SNr) during optogenetic stimulation of the globus pallidus externa (GPe). Comparison with existing methods: In several examples, we illustrate how the toolbox classifies responses in situations in which traditional methods (spike counting and visual inspection) either fail to detect a response or provide a false positive. Conclusions: The STReaC toolbox provides a simple, efficient approach for classifying spike trains into a variety of response types defined relative to a period of baseline spiking.


Assuntos
Algoritmos , Globo Pálido , Globo Pálido/fisiologia
10.
Cell Rep ; 43(3): 113916, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484735

RESUMO

The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.


Assuntos
Gânglios da Base , Peixe-Zebra , Animais , Peixe-Zebra/genética , Gânglios da Base/fisiologia , Corpo Estriado , Globo Pálido/fisiologia , Animais Geneticamente Modificados , Mamíferos , Vias Neurais/fisiologia
11.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38514185

RESUMO

The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.


Assuntos
Elétrons , Núcleos Intralaminares do Tálamo , Neurônios/fisiologia , Globo Pálido , Microscopia Eletrônica
12.
Eur J Neurosci ; 59(7): 1657-1680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414108

RESUMO

The timescales of the dynamics of a system depend on the combination of the timescales of its components and of its transmission delays between components. Here, we combine experimental stimulation data from 10 studies in macaque monkeys that reveal the timing of excitatory and inhibitory events in the basal ganglia circuit, to estimate its set of transmission delays. In doing so, we reveal possible inconsistencies in the existing data, calling for replications, and we propose two possible sets of transmission delays. We then integrate these delays in a model of the primate basal ganglia that does not rely on direct and indirect pathways' segregation and show that extrastriatal dopaminergic depletion in the external part of the globus pallidus and in the subthalamic nucleus is sufficient to generate ß-band oscillations (in the high part, 20-35 Hz, of the band). More specifically, we show that D2 and D5 dopamine receptors in these nuclei play opposing roles in the emergence of these oscillations, thereby explaining how completely deactivating D5 receptors in the subthalamic nucleus can, paradoxically, cancel oscillations.


Assuntos
Dopamina , Núcleo Subtalâmico , Animais , Haplorrinos , Gânglios da Base/fisiologia , Núcleo Subtalâmico/fisiologia , Globo Pálido/fisiologia
14.
Compr Psychiatry ; 131: 152462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354586

RESUMO

BACKGROUND: Mindfulness-based cognitive therapy (MBCT) has been documented to be effective in treating obsessive-compulsive disorder (OCD). However, the neurobiological basis of MBCT remains largely elusive, which makes it clinically challenging to predict which patients are more likely to respond poorly. Hence, identifying biomarkers for predicting treatment outcomes holds both scientific and clinical values. This prognostic study aims to investigate whether pre-treatment brain morphological metrics can predict the effectiveness of MBCT, compared with psycho-education (PE) as an active placebo, among patients with OCD. METHODS: A total of 32 patients with OCD were included in this prognostic study. They received magnetic resonance imaging (MRI) brain scans before treatment. Subsequently, 16 patients received 10 weeks of MBCT, while the other 16 patients underwent a 10-week PE program. The effectiveness of the treatments was primarily assessed by the reduction rate of the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) total score before and after the treatment. We investigated whether several predefined OCD-associated brain morphological metrics, selected based on prior published studies by the ENIGMA Consortium, could predict the treatment effectiveness. RESULTS: Both the MBCT and PE groups exhibited substantial reductions in Y-BOCS scores over 10 weeks of treatment, with the MBCT group showing a larger reduction. Notably, the pallidum total volume was associated with treatment effectiveness, irrespective of the intervention group. Specifically, a linear regression model utilizing the pre-treatment pallidum volume to predict the treatment effectiveness suggested that a one-cubic-centimeter increase in pallidum volume corresponded to a 22.3% decrease in the Y-BOCS total score reduction rate. CONCLUSIONS: Pallidum volume may serve as a promising predictor for the effectiveness of MBCT and PE, and perhaps, other treatments with the shared mechanisms by MBCT and PE, among patients with OCD.


Assuntos
Terapia Cognitivo-Comportamental , Atenção Plena , Transtorno Obsessivo-Compulsivo , Humanos , Atenção Plena/métodos , Globo Pálido , Terapia Cognitivo-Comportamental/métodos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/terapia , Transtorno Obsessivo-Compulsivo/psicologia , Resultado do Tratamento
17.
Eur J Paediatr Neurol ; 48: 109-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199204

RESUMO

DBS has been shown to be an effective intervention for neurological disorders. However, the intervention is complex and many aspects have not been understood. Various clinical situations have no solution and follow trial and error approaches. Dystonia is a movement disorder characterized by involuntary muscle contractions, which gives rise to abnormal movements and postures. Status dystonicus (SD) represents a life-threatening condition that requires urgent assessment and management. Electrophysiological markers for risk of symptom worsening and SD related patterns of evolution in patients treated with long-term deep brain stimulation (DBS), and specially under the effect of withdrawal and renewals of simulation are needed. To this end, we study the variability of neural synchronization as a mechanism for symptom generation under successive perturbations to a system, i.e. withdrawals and renewals of neuromodulation, through computational simulation of clinical profiles under different plasticity conditions. The simulation shows that the neuroplasticity makeup influences the variability of oscillation synchronization patterns in virtual "patients". The difference between the effect of different electrophysiological signatures is remarkable and under a certain condition (equal medium long term potentiation and long term depression) the situation resembles that of a stable equilibrium, putatively making the sudden worsening or change less likely. Stability of variability can only be observed in this condition and is clearly distinct from other scenarios. CONCLUSION: Our results demonstrate that the neuroplasticity makeup affects the variability of the oscillatory synchrony. This i) informs the shaping of the electrophysiological makeup and ii) might serve as a marker for clinical behavior.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Distonia/terapia , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Plasticidade Neuronal , Globo Pálido , Resultado do Tratamento
18.
J Clin Neurosci ; 120: 76-81, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211444

RESUMO

BACKGROUND: When deep brain stimulation (DBS) infections are identified, they are often too advanced to treat without complete hardware removal. New objective markers to promptly identify DBS infections are needed. We present a patient with GPi (globus pallidus interna) DBS for dystonia, where the electrode impedance unexpectedly increased 3-months post-operatively, followed by serologic and hematologic markers of inflammation at 6-months, prompting explantation surgery. We recreated these conditions in a laboratory environment to analyze the pattern of changing of electrical impedance across the contacts of a DBS lead following Staphylococcus biofilm formation. METHODS: A stainless-steel culture chamber containing 1 % brain heart infusion agar was used. A DBS electrode was dipped in peptone water containing a strain of S. aureus and subsequently introduced into the chamber. The apparatus was incubated at 37 °C for 6 days. Impedance was measured at 24hr intervals. A control experiment without S. Aureus inoculation was used to determine changes in impedance over a period of 6-days. RESULTS: The mean monopolar impedance on day-1 was 751.8 ± 23.8 Ω and on day-3 was 1004.8 ± 68.7 Ω, a 33.7 % rise (p = 0.007). A faint biofilm formation could be seen around the DBS lead by day-2 and florid growth by day-3. After addition of the linezolid solution, a 15.9 % decrease in monopolar impedance was observed from day 3-6 (p = 0.003). CONCLUSION: This study gives insight into impedance trends following a hardware infection in DBS. Increased impedance outside expected norms may be valuable for early prediction of infection. Furthermore, timely management using antibiotics might reduce the frequency of infection-related explant surgeries.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Humanos , Impedância Elétrica , Staphylococcus aureus , Eletrodos , Globo Pálido/fisiologia , Resultado do Tratamento
20.
Artigo em Inglês | MEDLINE | ID: mdl-38249547

RESUMO

Background: Tourette syndrome (TS) is a neurologic condition characterized by motor and phonic tics. Dystonic tics, including blepharospasm, are considered atypical or unusual in severe TS. Case Report: We report a severe case of TS with facial dystonic tics resembling blepharospasm in which the microlesion effect and a sustained therapeutic effect was observed with bilateral globus pallidus interna (GPi) deep brain stimulation (DBS). Discussion: Bilateral GPi DBS can be beneficial for blepharospasm-like tics and severe symptoms of TS. The improvements seen can be explained by the microlesion effect induced by DBS lead placement in the GPi.


Assuntos
Blefarospasmo , Tiques , Síndrome de Tourette , Humanos , Tiques/terapia , Blefarospasmo/terapia , Globo Pálido , Síndrome de Tourette/terapia , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...